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PROGRAM FOR BAYESIAN H-GROUP REGRESSION

Ivo W. Molenaar and Charles Lewis*
FSW, Rijksuniversiteit Groningen (Neth.)

1. Sumaury

When multiple regression equations are to be estimated for m

groups which are supposed to be comparable though not identical,

both the pooled estimates and m separate least squares estimates

per group may be suboptimal. Lindley, Novick, Jackson and others

have advocated a Bayesian estimation procedure in which the estimates

would be weighted averages of the separate estimates per group on

one hand and some pooled estimate on the other hand, with weights

determined essentially by the data. This extension of the Kelley

foimula for regression to the mean has proven its value in several

cross-validation studies (Novick, Jackson, Thayer & Cole, 1972;

Lissitz and Schoenfeldt, 1974; Shigemasu, 1976; Jansen, 1977). The

modal posterior values for intercepts, slopes and residual variances,

however, are not easy to obtain. The procedure outlined by Novick

et al. (1972) and Jones and Novick (1972) still poses some numerical

and methodological problems. The present paper presents a modified

algorithm removing most of the deficiencies. It remains true,

*Supported in part under ONR Contract tN00014-77-C-0428, Melvin R.
Novick, principal investigator. Opinions stated herein are those
of the authors and not those of the supporting agency.
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however, that u-group regression is an example of a Bayesian model

in which it is somewhat difficult to specify a vague prior that

would let the data and the collateral information speak for them-

selves.

The major features of the new approach are:

(1) the use of parameters with constant values for slopes

across groups whenever the prior or the data indicate that this is

desirable,

(2) the use of residual variance constant across groups,

(3) independent priors for regression parameters,

(4) scaling of the predictors at the grand mean rather than

at the so-called "ideal scaling points" mentioned in Novick et al.

(1972),

(5) transformation of all variables, including the criterion,

to mean zero and variance one at the start of the calculations,

with return to the raw scaling only for display of results to the

user or for questions to the user.

Section 2 of this report gives a description of the old model

(used by Novick et al. 1972) and a schematic comparison with the

new model. Section 3 describes the old iterative algorithm for

obtaining modal posteriot estimates and its subsections 3a, 3b,

and 3c deal with the deficiencies of that algorithm. Section 4

with Its subsections 4a through 4. discusses the revisions on

which the new model is based. Section 5 then outlines the new
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model and derives the corresponding equations. Section 6, which is

as far as possible independent of the preceding material, contains

some information for users of the m-group regression program, and

a final section 7 discusses possible future extensions.

2. Old model specification

Ini the model used by Jones and Novick (1972) and by Novick et

al. (1972) for simultaneous regression in m groups, q first stage

describes how the criterion is distributed given the regression

parameters and given the predictor values. Considering the groups

as exchangeable, the next stage treats the regression parameters

(including intercept and residual variance) as a random sample from

some distribution, characterized by unknown hyperparameters. A third

stage specifies some,rather vague,information on these hyperparameters

(c.f. Lindley and Smith, 1972).

The stages are described in Novick et al. (1972) and summarized

below side by side with the new model which will be discussed in

sections 4 and 5. In both models the data for the j-th individual

out of the nt individuals in the i-th group (i - 1, 2. ...., m)

consist of a criterion score yij and scores on I predictors kij

(k - 1, 2, ..., A; j - 1, 2, ..., ni). In each (X + 1) x ni matrix

X1 of predictor scores we include a row of ones for the intercept.

For the new model the index set (0, 1, ..., 1) is partitioned into

two disjoint subsets F (parameters common to all groups) and G

(parameters different across groups).
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TABLE 1

OLD MODEL NEW MODEL

First stage:

YiJ 4N(kO'kixkij; *t) Ytj AI( ZF fxtJ+ grC gjxgJj; 0)

Second stage:

(B0i,Ru. ...0 11)1A.N(a k -H
1 ) OfA uniform (-',);

ix-2lv, v0 2 )  08iALN(uS, 'f);

log *AL uniform (-., =) 4

Third stage:

,V and log o2A uniforu (-v,; .4 uniform (--,-1;
a -2HA Wishart (v',Z, I + 1); x1 . X (v',v'Tr).

E diagonal matrix.

User should mpply (s". bpif):

v' (sm') VI (small)

diagonal elements of E T
S

This schematic presentation is restricted to the essentials.

Independene assumptions, conditionings and ranges of indices are

described more fully in Novickat al. (1972) for the old model sad in

setions 4 sad 5 for the new one. For the old model, Lindley (1970)
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details how integration over the hyperparameters leads to a posterior

density for the regression parameters given the data. Up to an

additive constant, its logarithm is (Lindley, 1970, formula 11):

log p ((eki},{ iI)=

-Z ()ini + 1) log *0 -1 E (Yj - E Oihij)2/¢i (1)
i ij h

- (v' + m - 1) log I V'hk + Z (Bhi-Bh.) (Bki - Bk)

-h(m + 1) log log {fr(- +K)).

Here 0 and n denote the harmonic and geometric mean of the set

respectively, Bh. denotes the mean across i of 0 hi and lahkl' say,

denotes the determinant of an (X + 1) x (L + 1) matrix A with elements

ahk. The constant K is introduced to insure convergence (Lindley,

1970, page 3). For t predictors and m groups, (1) is a function of

(9 + 2) m parameters. Its maximization leads to the desired posterior

modal estimates, but it poses some problems.

3. Problems of the old model

The computer programs made available by Novick et al. seek the

maximum of (1) by the following iterative procedure. An initial set

of estimates should be computed first; one might take the least

squares estimates per group, the least squares estimates for the pooled

sample or the so-called model II estimates, see below. Equating the

derivatives of (1) with respect to Ohi to zero, for fixed i, leads to

a set of equations which-are linear in Ohi if one temporarily considers

Oh. (h - 0, 1, ... t), *i and the determinant as fixed. They are
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successively solved for each i; after updating means and determinant

this is repeated twice. Next the updated values for all 8hi are used

to obtain new *i by equating the derivative of (1) with respect to

01 to zero; such equations are linear in 1/0i provided that n, e and

all B are temporarily considered as fixed. This whole process is
hi

called one iteration cycle, and such cycles should be repeated until

the increase per cycle of the function (1) has become negligible.

This algorithm has been used in several applications mentioned

in section 1, but not without problems:

(a) very slow convergence;

(b) non-robustness against choice of prior values for v' and ahh;

(c) non-robustness against initial choice of estimates;

(d) suboptimal determination of the mean value 8h. for regression

parameters for which almost total regression takes place.

3a. Slow convergence

The type of very slow convergence encountered most frequently

consists of a few drastic changes in the first cycles followed by a

slow, decelerating and monotone movement of each 8hi value to its

limit. As explained in detail in Molenaar.(1978), 'insertion after

every 4th, 5th,or 6th iteration of leaps (extrapolating from the past

three values in a geometric series model for each parameter separately)

typically reduces the total required computer time by a factor of 2

to 4; in exceptional cases a trial run of some 10 to 20 cycles

including leaps could be examined, after which a change of the default
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values of the leap process produces a fully satisfactory convergence.

The computer-time involved in the bookkeeping of the pre-leap values

is more than gained back because one efficient leap step may produce

more improvement of the goal function (1) than ten or even fifty

ordinary iterations.

Since publication of Molenaar (1978) the leap process underwent

two simplifications. First of all residual variance estimates were

nearly always very stable across iterations, and therefore no leaps

are programmed for them. Secondly, after the first few iterations,

both the variances of the regression parameters (across groups) and

the z-scores obtained by standardization across groups of the individ-

ual parameters in each group, were also very stable across iterations.

The revised algorithm, therefore, calculates leaps only for the means

across groups of the regression parameters. This means that the

individual values at each iteration cycle, or their differences

between two cycles, need no longer be stored for calculating the

geometric series ratio underlying the leap. It suffices to extra-

polate at each leap the past three mean values (across groups) of each

slope and the intercept (taken at the grand mean). For each of those

means a value is extrapolated from the geometric series model, and

the after-leap value of each individual estimate is simply obtained

by translation to the new mean value. The provisions replacing an unsatis-

factory geometric series leap remain as in Molenaar (1978), with the

exception that the default values now are:
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-- first leap after 5 cycles;

-- each leap after 4 more cycles;

-- no leap if mean stable in 3 leading digits in last cycle;

-- leap - 20* lust difference if difference changed sign or is

almost zero;

-- leap = 20* last difference if last difference larger or hardly

smaller than preceding difference;

--stop if log posterior density stable in 5 leading digits.

The previous version also stopped iteration wheq all parameters

were stable in a user-specified number of digits. This provision is

now deleted, because it was almost never fulfilled and led to much

bookkeeping and time loss.

A FORTRAN program called BR is available in which all parameters

just mentioned can be manipulated, as well as a few others. For

regular use in the CADA Monitor, however, it is doubtful whether a user

would have the skill to gain from successful manipulation of the

parameters as compared to running some extra iterations. The BASIC

version of the program, called BR1,BR2 therefore fixes all parameters

at the just-mentioned'default values. For the exceptional case that

manipulation is desired, it could be obtained by either-changing the

BASIC source deck or using the FORTRAN version.
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3b. Prior values robustness problem

In the log posterior density given by formula (1), the quantities

ahk and v' should be provided by the user, as a description of a

plausible covariance matrix for the regression parameters and an

indication of the uncertainty associated with that description (smaller

v' implying greater uncertainty). In Novick et al. (1972), it was

advised to take v' - 1 unless specific prior knowledge is available.

It was also advised to take the off-diagonal elements ahk, h 0 k,

equal to zero, with the proviso of scaling the predictors at the "ideal

scaling points" described in Novick et al., 1972, p. 37. This is

because the intercepts can only be considered independent of the slopes.

when the predictors are suitably scaled. The problem of prior specifi-

cation is now reduced to a choice of values for the diagonal elements

Ohh. If the user could provide prior estimates, say Th' for the variances

of 0hi' it was advised to identify these with the prior marginal modes

of these variances, namely v' Ohh/(v' + 2). For v' 1, this leads

to the specification ahh - h  (This point is discussed in section 4c.)

As a practical matter, even providing Th values could be difficult

for a user without specific prior knowledge. Therefore, Novick et al.

(1972) advised setting Th equal to the corresponding unbiased sampling

theory estimates, based on the current data, for the variances of the

regression parameters. The development of these model II ANOVA estimates

is given by Jackson (1972). As noted by Jackson, Novick and Thayer

(1971), there are two difficulties with this advice. The first is the
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theoretical point that prior quantities should not be derived from

the data being analyzed. When v' - 1, however, it was hoped that

the precise choice of "h would matter little for the posterior

distribution of the regrcssion parameters. In this light, the use

of model II estimates may be seen as merely a convenient shortcut.

The second difficulty is a practical one: the model II estimates may

sometimes be negative. In this case, it was advised to select a

"small" positive value for Th. As with the first poidt, it was hoped

that the precise choice would not be too important.

The robustness of the final estimates to variations in the choice

of 'Ch was, in fact, illustrated for a simple case (10 groups, 1 predictor)

by Jackson et al. (1971, p. 140). We shall now consider an illustration

chosen to show that this robustness is not always so apparent. From

the 25 percent sample of the 1968 ACT data analyzed by Novick et al (1972),

12 of the 22 groups were selected (called the "12HOMO" dataset in

Molenaar, 1978). Table 2 gives the modal estimates obtained for these

data when different Th values are used. For easier comparison, the

estimates for the 12 groups have-been replaced by the mean and standard

deviation of those 12 values for each of the regression parameters.

As before, v' - 1 and ahh m 3Th were used for all estimates in the table.

Moreover, the iteration process described in section 2 always used the

least squares values as initial estimates for the regression parameters.

The problem of choice of initial estimates is considered in detail in

section 3c.
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In the first four lines of the table, the only variation is in

the small positive constant replacing the ANOVA estimates of r2

and T4 which were negative. Note that multiplication of those prior

variances by a factor of 10 leads to.posterior modal estimates in

which the standard deviations are about 10 times as large; there is

little effect on the means of a2 and 84 or on the other parameters.

In the next 3 lines of the table we have used some priors that some-

body vaguely familiar with regression equations for AtT scores Aight

have specified. Note that the data do no longer show the almost total

regression of the 82 and 84 values previously imposed by the very small

prior T2 and 4"

In the eighth line we have purposively made T1 and T3 smaller

than 12 and T4: the standard deviations of the modal estimates faith-

fully reflect this prior pseudo-information, although the model II

ANOVA estimates were supposed to tell us that the data suggest total

regression for the slopes pertaining to the second and fourth predictor,

not the first and third. The ninth line shows that large prior variances

produce a solution very close to the LS values. The final three lines

give the characteristics of the LS estimates, the model II estimates and

the regression coefficients when data from all groups are pooled into

one sample.

Finally, note that Table.2 contains a linemarked "II but twice T 1

in which the only change compared to the top line is doubling the value

of '1. The fact that the a priori most probable value of just one of the

slope varinnces now Is twice as large, i.e., the standard deviation
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is multiplied by 1.414, makes the standard deviation of Bii 1.464

times as large, Sut at the same time decreases the standard deviation

of 104 83 from 23 to 18. Looking at the modal estimates of the regression

parameters themselves, the prediction for the third grout changes most:

it was: -.431 + .018 X + .017 X2 + .015 X3 + .017 X4;

it becomes: -.401 + .013 X + .017 X + .016 X + .017 X4.

What conclusions can be drawn from this detailed presentation?

As long as the amount of variability among regression coefficients is

smali, the variability of the Bayesian posterior modal estimates is

strongly influenced by the prior specification; it was already noted

by Novick et al. (1972) that the small positive constant replacing

negative model II ANOVA estimates T should be chosen with some care.

The means across groups, on the other hand, are rather stable in Table 2,

and it should be kept in mind that a standard deviation of .026 or of

2.5 around a mean of 176 leads to almost the same prediction equations.

The quality of multiple regression equations in cross-validations is

remarkably stable against changes in regression weights (Dawes, 1978,

Wainer, 1976), so the differences in Table 2 may after all not be

disastrous. On the other hand, in many cross-validation studies Bayesian

estimates are superior only by a few percent to least squares per group,

so a careful prior specification remains important. We shall resume

this discussion in section 6, where the revised model will be similarly

examined.
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3c. Almost total regression: a threat to the model

It is well known that complete equality of parameters across

groups leads to problems in Bayesian simultaneous estimation (Novick,

Jackson & Tayer, 1971.; Lindley, 1971; Novick et al., 1972; Novick,

Lewis & Jackson, 1973). By the introduction of informative priors,

Lindley, Novick and others have tried to avoid the degeneracy problems.

This was satisfactory in the case of the residual variances in m-group

regression, discussed in section 4a. For the slopes and the intercept,

however, it does not help enough. This will be illustrated first by

examining the log posterior density, and then by a numerical example.

The main feature of our new model, then introduced in section 4b, was

motivated by the desire to get rid of the degeneracy problem.-

Let us now examine the effect of almost total regression for a

parameter on the log posterior density (1) which was given on page 5.

It is obvious that the first line of (1) would be maximized by the

least squares (LS) values. The second line is maximized by bringing the

determinant as close to zero as possible. When the-user has supplied

some small values for vohh this is achieved by linear dependence

among the m-vectors Bh (h - 0, 1, ... 1). Now as soon as the estimated

values of 0 hi for some h lie very close together (almost total regression),

a change in their deviations from the mean Bh. has almost no further

influence on the residual sum of squares in the first line of (1),

and thus it is used to make the determinant decrease. In other vords,

it pays to let the (I + 1)- variate normal distribution of the 0h
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degenerate into a lower-dimensional one. Although the positive value

of v'ohh prevents complete degeneration, the algorithm based on the

old model Is deficient: because of the group-by-group calculation of

new (Bhi1 a change in hi-h lhs far more effect on the log posterior

density than a change in the mean Bh., and the optimal value for Oh. is

never found for indices h with small variance across groups.

Table 3a shows that such undesirable behavior was indeed found

for the "12HOMO" dataset used before. In each block of lines of this

table, the same prior specification was combined with various initial

values,described in Table 3b. Note that especially in block 1 suboptimal

convergence occurs for LS, LSH or MD2 initial values; the log posterior

density remains at what seems to be a local maximum, and the maximizing

values of 0hi thus obtained differ markedly from those found writh PLD

initial values. Although Table 3b shows that LSH and MD2 are quite

different, they lead to virtually the same modal solution in both blocks

of Table 3a; the solution from LS initial values is worse, and from

PLD it is better. Similar results were found for other datasets than

"12NO1".
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Table 3a. Comparision of log posterior density and modal Bayesian
estimates at the end of the iteration process for four sets of initial
estimates described in Table 3b ("12HOO" dataset). Within each block
the same prior specification is used and thus the final log post. d.
and estimates should be identical, apart from rounding errors. The
algorithm was programmed to stop when the criterion remained constant
in five significant digits. Instead of all 12 parameter estimates
per group, their mean and standard deviation are given. The intercept
as given here pertains to "ideal scaling", see Novick et al. (1972, p. 37).

Block 1: v' - I and prior model II with T2 and T4 (negative) replaced by 10-7

3 4 4 4 I. 3

initial log post.d. 10 P0 10 B 10 82 10 03 10 4a0 10 3

M (SD) M (SD) M (SO) N (SD) M (SD) M (SD)

LS 280.76 - 91(202) 310( 68) 174(.017) 189( 23) 173(.026) 399(4.3)

LS4 281.21 -103(201) 322( 69) 163(.017) 203( 23) 150(.026) 399(3.9)

PLD 282.02 - 62(201) 309( 69) 157(.017) 181( 24) 201(.025) 399(3.5)

102 281.08 -103(201) 321( 69) 163(.017) 203( 23) 150(.026) 399(4.0)

Block 2: v1 - I and prior model It with T 2 and T4 (negative.) replaced by 10-4

3 4  4 '4 4 3

initial log post.d. 10 30 10 B1 10 42 10 483 10 4a 103

M (SD) M (SD) M (SD) M (SD) M (SD) N (SD)

LS 199.27 -85(192) 307( 68) 170(17) 190(26) 179(24) 395(4.2)

LSM 199.85 -83(192) 307( 68) 168(17) 191(26) 180(24) 395(3.8)

PLO 200.57 -89(192) 307( 68) 171(17) 192(26) 175(24) 396(3.4)

1D2 199.72 -85(192) 306( 68) 169(17) 191(26) 179(24) 395(3.9)

Table 3b. Four sets of initial estimates for the "12HOMO" dataset.

initial estimates 10 3B0 10 4 10 2 10 43 104 103

M (S) M (SO) M (S0) M (S) 1 (S) M (SO)

Ls -123(263) 247(349) 163( 160) 304(301) 150( 200) 442(129)

LS -123( 0) 247( 0) 163(- 0) 304( 0) 150( 0) 442( 0)

PLO - 70( 0) 300( 0) 157( 0) 141( 0). 201( 0) 497( 0)

1D2 - 95(270) 251( 91) 163(.036) 284( 67) 150(.037) 441( 59)

Explanation: LS are the least squares estimates, LSM is their mean
across groups, PLD the pooled estimates taking all individuals from
al1 groups together, 1D2 are the Model II ANOVA estimates.
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In a trial and error procedure not reported in Table 3, we have

modified the PLD set of initial values with regard to $21 and S41'

the two sets of parameters which are almost totally regressed in Block 1.

The final means across groups for the two sets of estimates are

essentially identical with the initial values thus modified. One

such modification even gives a slightly larger log posterior density

than that based on PLD.

.Several other trials have convinced us that the sensitivity to

initial values specification is not something very exceptional, and that

it seems to be most pronounced when some prior variances are specified

to be very small. The initial values for such a parameter then have

a mean which remains almost unchanged during the iterations, even

though a change could produce a higher value of the log posterior

density. This is because the algorithm adapts one 8 hi at a time:

moving it away from the slope values in the other groups is immediately

punished by a decrease due to the determinant in (1). Our proposal

in the next section to take Ohi equal across groups for certain values

of h is expected to bypass this undesirable property of the present

algorithm.

4. Revised model assumptions

The problems and deficiencies described above have led the authors

to provide a revised modelb which was schematically described in Table 1.

As the algorithm based on the new model is intended for the CADA Monitor

and will be regularly used on medium size computers, it was decided to
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introduce a few more simplifications. The subsections 4; through 4e

comment on those changes; the model itself and its consequences will

be described in section 5.

4a. Constant residual variance

In a theory of Bayesian m-group regression, the groups are

considered to be exchangeable, but to have varying intercepts, slopes

and residual variances. A strictly common value for the latter is

explicitly forbidden because it would lead to divergence problems.

A small constant K is introduced in the formulae involving the geometric

and harmonic mean for just this reason. When the value of K was varied

between .01 and .0001 times the harmonic mean, this had some influence

on the across groups variability of the estimated residual variances;

the modal estimates of slopes and intercepts, however, remained very

stable.

We have no reason to believe that homoscedasticity across groups

is a more, or less, realistic assumption than homoscedasticity within

groups, Moreover, in all examples of Bayesian m-group regression that

we have seen the coefficient of variation of the final Bayesian

estimates of did not exceed 1 or 2 per cent. Finally, it is found

both in the algebraic formulae and in the empirical results that the

Bayesian estimates of 0hi (which are the main goal) are hardly

affected at all when small or moderate differences between * across

groups are ignored.

In the model outlined in section 5, we shall thus assume that

each observation has the same residual variance #, which has itself

a noninformative prior proportional to *-. The latter assumption
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could be replaced by an inverse chi square specifying prior knowledge

on #. The data provide us, however, with so much information on

that such prior information will not be important.

In remark 6 of section 6 of Molenaar (1978) a warning was given

for a perfect or almost perfect fit in at least one group. Division

by an estimated residual variance of zero, or very close to zero,

could of course create problems. Now that a common value across groups

is used, the risk of too small values for this residual variance has

become negligible, and the previous use of a lower bound PHIMIN for

residual variances has not been continued.

4b. Common values in case of low variance

It has been documented in section 3c that the algorithm does not

perform well as soon as some regression coefficient shows very little

.variance across groups. The lack of variance may be obtained because

its prior estimate is very small (the actual model II estimate might

be negative, in which case Jones and Novick suggest replacement by

107 ). It may also happen that the values for some parameter get

very close together during the iteration process, although both the

prior variance estimate and the initial values do not indicate this

behavior.

In both cases,a variance of less than a user-specified bound

TAUMIN is a reason for replacing all values 8hi (i - 1, 2, ..., m)

by their mean 0h.;it will no longer be assumed that such a parameter

is distributed across groups as a component of the multivariate normal
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(, H- ) distribution mentioned in section 2, but that it has a

comon value 6h which has a uniform prior distribution. Because

slopes and intercepts can be very different according to the scales

being used, the bound TAUMIIN is applied after standardization of

all variables, see subsection 4e.

In the model as described below, it is assumed that the index

set {0, 1.2, ., L) denoting the intercept and the L predictors is

subdivided into a set F (mnemonic for fixed) for which this total

regression has taken place, and its complement C (mnemonic for

general) for which the values across the groups are different. The

predicted value for the J-th element of the i-th group can thus be

written as

x8 xYij =  F 8f xfij + geCG gi gij

The (t + l)- dimensional multinormal distribution of Bhi

(h - 0, 1, ..., L) for which some components have a variance very

close to zero will thus be replaced by a vector of which some components

are common to all groups, whereas the other components have a normal

distribution of lower dimensionality. The actual effect on prediction

of this replacement is negligible if the variance bound TAUMIN for

admission to the index set F is kept lt' enough.

One full cycle of the iteration process now consists of four

parts, (see also section 5):

(a) solution of (of If CF) by LS regression of

•Ytij " x G Sgxij on (xfij) treating {0K) as known;

yi e igj fjg
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(b) solution of fB8gilcG} by solving a system of linear equations

which results from equating the derivatives of the log
m2

posterior density to zero, treating {Bf) and( il(Ogi-Bg )

as known;

(c) solution of * treating all 8 and Bgi as known;

(d) check whether any index should pass from G to F.

The split of all indices into the subsets F and G essentially

means that the revised model is really used as a clas.s of models, or

rather a lattice consisting of 2 0+1 models because that is the number

of partitions of (0, 1, ..., X). An example is given in Figure 1.

F- G - {0, 1, 2}

BO constant; B1, B2 free I onstant; 0' 02 free 2 constant; B, B1 free

0' cnstnt 2 ree 0'2 ostnt ree 2=constan;B e
F0- (0, 1), C 2) F - {), C - (1) F = (1, 2, G {01

I, 1,2 constant
F - (0, 1, 2), C =

Figure 1. Lattice of 8 models for
the case of L - 2 predictors.

The constant parameters at the beginning of the iterations are

those with prior variance estimates less than TAUMIN, which is set at

10 in the current version. The user may force this by supplying

zero entries in subjective prior estimates,or the data may force it if-

model II prior variance estimates are used and these come out less than
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TAUMIN or even negative. During the iteration process, more indices

may pass into F. The bottom model in Figure 1 with an empty G auto-

matically produces the pooled estimates. The model used by Shigemasu

(1976) is the special case with G = {0}: free intercept and constant

slopes were postulated by Shigemasu, but are just one of the many

possible models here.

4c. Independent priors for regression coefficients

The original model outlined in section 1 containd a multivariate

normal (V, H- 1 ) distribution for Bhi' and for H a Wishart (v', Z, 1+ 1)

distribution. Earlier publications recommend to take v' - 1, ahk = 0

for h V k and ahh three times a suitable prior estimate of the variance

of ahi (including the intercept a I as 8 o).

As was explained above, the revised model allows that some hi have

a common value 8h' for which a uniform prior is assumed. For the remaining

parameters, say 8gi, it was decided to replace the assumption ahk -0

by the slightly stronger assumption that H-1 itself has zero off-diagonal

values. Our new model then becomes:

Of.1 uniform ~all $ and $g independent given Vz and g

f gi ggi.--" (lg, 0g);

pj uniform(-,e)
5 all Ug and 4. independent given v' and Tg

x-2 ( ' V T

5- 5
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The modification-leads to a substantial simplification of the

algorithm. Although prior knowledge on covariances between parameters

is conceivable, it will rarely be substantial, and the revised model

of course permits such covariances in the posterior distribution.

We are not advocating the use of a factor 3 in multiplying a most

plausible value for the variance to find the prior value for Tg. It

was used in the old model because the mode of any X-2 (V', V'(2 ) distri-

bution is v1' 2/(v' + 2), which means for v' 1 equating the mode to

2 2
o /3, and taking three times the mode for o This argument fails to

take into account that the natural way to think about a variance (now

called V'h) of a regression parameter ah is in the logarithmic scale

(that is why the uniform distribution for log lh would be used as an

ignorance prior). But if -p.X-2(v',V'Th) then the density of w = log 'h

can be derived to be proportional to exp(- v' (w + The -W) and this

has its mode at w - log Th* An extra advantage is that the mode of

the log standard deviation is now the corresponding log Th = logTh.

When the user is asked for a "most probable value" of the standard

deviation of the true regression coefficients across groups, we prefer

to use this value as a specification of Th

4d. Leaps for the mean only

This change has already been motivated and discussed in subsection 3a.

4e. Standardization of variables

Standardizing all predictors and the criterion to zero mean and unit

variance in the pooled sample means that the predictors get the common
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and absolute scale of beta weights and that the intercepts are prevented

from assuming very large absolute values. This is better for the

numerical accuracy, and it makes it possible to use a fixed quantity

(currently 10- 6) for the minimum variaice TAPIreN below which an index

is passed to the set F and the corresponding parameter is assumed

constant across groups. It is obvious that this would be undesirable

for raw slopes, of which one could range from .0004 to .0008 and another

from 4000 to 8000, say. At the end, just before the modal estimates

are printed, a reconversion to the raw scales is made, but the intercept

at the grand mean is printed as an extra column because it might be

more meaningful than the intercept fdr all predictors zero. The

desirability of the standardization was pointed out earlier in remark

6 of section 6 of Holenaar (1978).

In earlier publications by Novick et al. it was advocated to scale

predictors at so called "ideal scaling points" for which the least

squares estimates for the intercept and that predictor were uncorrelated

across groups. Calculation of these ideal scaling points was one of

the tasks of the preparatory program "BPREP" by Thayer. Our reasons

for preferring the grand means, also mentioned by Novick e al. as an

alternative to ideal scaling points, are the following: (a) they are

easier to obtain; (b) the intercept at the grand mean is more meaningful

to the user than the intercept at some "ideal point" that he never met

before; (c) uncorrelatedness of the LS estimates is not the same as

the (intended) uncorrelatedness of the true parameter values; and
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(d) empirical evidence both from Novick and from us strongly suggests

that the choice has a negligible influence on the final results.

5. The new model

The three stages of the new model have been described in Table 1,

and the modified assumptions underlying it were discussed in section 4.

The joint posterior density of all parameters given the data is for

the new model

P({Bgi , Of,ig, 4g1,fl(Xhij , Yij)-

4 -1(n+2) exp- -- E Z (yij-fBfxfij-iaixi)2 ]* (2)

II , -h(m+v'+2) exp[- -L (v'T + i(Bi-11) 2 ;

here n - ini denotes total sample size, and it is understood that in

all summations i ranges from 1 to m, and j across the ni individuals

of the i-th group; moreover fCF and gcG, the index sets of the constant

and free parameters respectively, and all values xOij. are identically

1 as dummies for the intercept.

Noting that

2 2 (E(Og -11) . f(Sg -0g) + m(Og -Is) (3)

one integrates (2) with respect to each igt and the last line of (2)

becomes
[(m+v'+l) - 1 (V'2 + 0 2

x 20 - g g 17 . (4)
£ i (~~~.~*,
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Next, integration with respect to 4# turns this product into

J1 { 'T + E (a gi- ag)) t~m - )  (5)
g 9 1

Tte logarithm of the posterior density is thus, up to an additive

constant, and omitting the dependence on the data in the left hand

side:

log p ((Sgi , Bf), *) -(n + 2) log * +

T1 IJ Bf -fj E 8gi Xgij)2+

-1 (m + V' - 1 ) Z log (v'T + 2 ( t a )2 (6)

g g 1 0gi Bg*.)

It is instructive to compare (6) to (1). The first term is simplified

because of -i a f; moreover there is no final term involving geometric

and harmonic means of *j" Denoting the middle term as --I Q (B),

it is clear that the modal estimate for is f Q(O)/(n + 2), and

log p ({ogl, 8k, ) - -4(n + 2) log Q (B) +

+ 1(n + 2) log (n + 2) - h(n + 2) +

- (m + v' - 1) E log {v'T + E (0 - 2}
g i . (7)

This makes clear the compromise character of the modal estimates

for B. The first term of (7) would be maximized by minimizing Q (B),

that is by using the least squares estimates. The last term is

maximized when 3gi - 13. for each i, but when the variance is less

than the bound TAUMIN, the index passes into the set F, and we would

end using the pooled estimates. The point is further elaborated

below.

Differentiation of (6) with respect to one fixed B (SF) yields

ZE y:x 5 1  -£B I x x -E0
I j J j 'Bj g 81 g gij sxij f fij xsij (8)
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If the index set F contains nF elements and {BglgcG) are treated as

known,(8) consists of nF linear equations (scF) in nF unknowns

(BfjfcF).

Differentiation of (6) with respect to one free parameter B tu (tcG,

ue{l, 2, ..., ml) yields

{ yuj Xtuj -Bf Z Xfuj Xtuj - 8g u  x guj X tuj ) +
i f J 9 1

+ (m+v' -1) (B - Bt. )/{V'Tt 2 (t- at.1 = 0 (9)
t

Treating '(,BfjfeF}, Bt. and the expression in the denominator as known,

this is a set of L + 1 - nF linear.equations, indexed by t, in (t + 1

- n F) unknown Sgu (for gcG, u fixed).

The solution for * given all 6f I and {B gi has already been

mentioned just before (7). As announced in section 4b, each cycle

of the iteration now consists of such a successive solution of all

(af ) from (3), all {8g ) from (9) and of * from * - Q()/(n + 2).

It is followed by a check, for each index g cG, whether Z (B gi- .) /(m-l)

< TAUMIN; if this is so the index passes from C to F. This check

is not made after the first cycle, because the values obtained there

could still be too far from the true values to Justify the fixing of

the parameters. Before the iterations begin, however, it is checked

whether some of the prior variances (model II or user-specified) are

below TAUJHI, and if so the corresponding parameters are taken constant

across groups.
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6. Users guide to the simultaneous regression program

This section is mainly written for the benefit of the user of the

interactive m-group regression program which was a result of the research

project described in this report. One may wonder why so many improved

models and computer programs were produced since the publication of

the basic research between 1969 and 1972. Let us try to give an

indication why Bayesian simultaneous regression estimation in m-groups

is a complicated matter, even compared to similar m-group models for

means or proportions.

The Bayesian estimates can always be viewed as a compromise between

least squares values and pooled values. Unless one of these extremes

is compatible with both the data and the prior information, however, the

simultaneous presence of an intercept and X predictors poses an extra

problem. Kelley could write Ti M PXi + (1 -P) X., and the reliability

determines-the extent to which regression to the mean occurs. In our

regression model, however, this extent will typically differ from para-

meter to parameter. Not only do we have I + 1 different extents of

regression, but also each extent, and the best value to regress to,

are influenced by the decisions on the other extents (cf. Jackson, 1972,

p.224). And finally, when the extent was a reliability it could be

estimated by one of the standard psychometric methods, but slopes and

intercepts are not observable quantities, and this is an extra obstacle

in trying to split their variance into true variance and error variance.
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The program now used for Bayesian m-group regression has some

predecessors. In 1972, the FORTRAN computer programs BPREP and

BAYREG were written by Thayer and others and described in Jones and

Novick (1972). A modified program MBREG, replacing BAYREG, is

described in Iolenaar (1978); the preparatory program MPREP proposed

in that reference was never written. In the fall of 1978 MBREG was

succeeded by BR, again by Molenaar, which incorporates nearly all

the changes mentioned in the present report. The major exception is

that BR has no rescaling of predictors and criterion. BR asks for some

preprocessing of data, which could be done in the BASIC program described

below, or in BPREP; independent use after different preprocessing is

feasible. An input description of BR is added as Appendix A.

Lewis then turned the batch programs BPREP and BR into conversa-

tional programs in BASIC, called BRI and BR2 respectively, and

added several new features. David Chuang made some final additions,

giving extra flexibility to the programs. This version will give a

description of the program in that stage, reached in March 1979.

The program starts vith an option of explanatory text, describing

that it leads to joint modal estimates for regression coefficients in

Ssuimilar (exchangeable) groups in cases of minimal prior knowledge.

It specifies the restrictions (currently: at most 50 groups, at most 4

predictors, at least 6 observations per group) and announces the types

of sufficient statistics per group that can be used for data entry.

Data entry may be completely via the keyboard, in a veil documented

but lengthy sequence of questions and answers. The standard option,
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however, is data entry from a previously prepared file. Such a file

goes in the current version under the local name "SOMDATA." It may

now have been prepared in an earlier keyboard entry session, but

after updating of the CADA Data Management capabilities it will be

possible to create the complete input file there. At the end of data

entry., either file or keyboard, facilities for input revision are

offered.

The program next displays the least squares (LS) estimates per

group for the intercept at zero, intercept at the pooled mean of

the predictors, slopes and residual standard deviation. It is ad-

visable to study these in some detail: it could be wise to delete

a group or split the analysis into clusters of groups if the LS

values indicate a strong violation of exchangeability or of homo-

scedasticity between groups. It should be kept in mind, however, that

for small sample sizes the LS values behave rather wildly, and that

the estimated residual standard deviations may differ by a factor of

say 3 without making the model of equal s.d. seriously misleading.

As an extra line below the LS values of the last group, the pooled

values (PLD) are displayed, which would be obtained by pooling the

observations from all groups and calculating one least squares regres-

sion equation for the joint data. The Bayesian estimates that the

program seeks to obtain can always be viewed as a compromise between

the extreme situations of LS (groups have nothing to do with each

other) and PLD (groups are samples from the same population).
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As the next step the program calculates model II ANOVA estimates

for the variance across groups of the regression parameters, and the

corresponding standard deviations. The calculation, described in

Jackson (1972, p. 223-224) amounts to subtracting from the "observed"

vr ance of the I.S est ilates the "error" var lance that can be ascribed

to sampling error. lt is well known that such estimates can be negative,

in which case the program replaces them by zero.

For the intercept this part of the program assumes all predictors

at the grand mean, which is shown on the same display. It is obvious

that the intercept with all the predictors at zero could exhibit much

more variability. Criterion values for the predictors at the grand

mean should be more meaningful for the user, and their variability is

to a large extent independent of variability in the slopes.

At this stage the user has an important option: he may delete

some predictor (which may avoid multicollinearity problems) or some

group (which may avoid violations of exchangeability and/or homo-

scedasticity).

When a satisfactory set of predictors and groups has been selected,

the program proceeds to specification of prior information. This re-

quires first prior estimates of the standard deviations across groups

of the regression parameters. The user may choose either the model II

estimates or provide his own prior information. In the absence of

such information the model II values are certainly useful, although

they have the properties of (a) making the prior data dependent and

(b) ascribing all variance to sampling error whenever the estimate

comes out negative, thus forcing the corresponding slope or intercept

to be constant across groups. Our personal feeling is that there are
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situations in which the user has no idea about true between group

variability (then use model II) and also situations in which previous

experience with similar regression problems enables the user to guess,

at least accurately up to a factor of three, say, the prior standard

dev at ion bctw.en groups.

When the user is doubtful as to whether these prior standard de-

viations are not just pure guesswork, we have two consolations for him.

First, the model does not use this prior value as such, but it assumes

that the true prior variance has an inverse chi square distribution

with low degrees of freedom around the square of the supplied value

as a typical one, so all kinds of smaller and larger variances remain

possible. These degrees of freedom are the next question asked by the

program: the recommended range is 1 through 10, with many groups a

little higher than with few groups. For most cases df-5 will be a

reasonable choice. Secondly, the user may rerun his analysis with

different prior s.d. or df and find out for himself whether his results

are very sensitive to his subjective decisions (our experience is that

they typically are not essentially influenced unless rather little

amounts of data are used.) Note that the final values of log posterior

density are not comparable between runs with different prior s.d. or df.

A last choice that the user may make is whether he wants the

iterations to start from LS or PLD initial estimates. It is advised

to use PLD, and LS only in cases where large datasets make it pladsible

that the end results will be close to IS. This option is useful when

the existence of bimodality is feared: if convergence from both ex-

treme initial situations leads to the same log posterior density (up

to 4 significant digits) and the same slopes and intercepts at the grand

mean (up to 2 significant digits) the risks of obtaining a local maximum
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are highly reduced. If the user reruns the program, after obtaining

Bayesian estimates, with different prior s.d. or df, it is also pos-

sible to use the earlier Bayesian estimates as initial values. This

option usually leads to faster convergence than PLD or LS initial

estimates.

Now--at last--the program has enough information to start the

iterative process. In each cycle several systems of linear equations

have to be solved and the corresponding sets of parameters are updated.

As this may be time-consuming on a medium-sized or small computer, the

value of the log posterior density at the end of each cycle is printed

so that the user may follow the search for its maximum. After the

fifth cycle and then after each fourth next cycle there may be more

increase of the log posterior density because an extrapolation or leap

is made. The iteration stops'when the log posterior density is stable

in five significant digits. If this takes more than 10 cycles, the

user may exit the iteration process after each set of 10 cycles. This

facility could be useful when a restart with other initial estimates or

prior values is desired. The use of the estimates obtained before

stabilization of the log posterior density should not be encouraged:

it is a very flat surface as a function of its many parameters, and

small changes in the log posterior density may correpsond to substantial

changes in the slopes and intercepts.

The next display shows the modal posterior values of intercept at

zero, slopes, and Lntercept at grand mean. This is done for all groups,

or for 10 groups at a time if there are more the 10. At the bottom

the modal estimate of the residual variance and the corresponding stan-

dard deviation are given (homoscedasticity is assumed both within and

between groups).
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It is obvious that the user will want to keep the final modal

estimates. In many cases he will be also interested to keep the

prior s.d.'s and df and the LS and PLD estimates. The program there-

fore opens a local file DATB, in which these quantities are entered

in fixed format for later use. See Appendix B for a full description.

This file should be printed or copied before the next run of the

program, because that run would overwrite it.

7. Conclusion, possible extensions

The new feature of this program allowing constant parameters

across groups upon suggestion of either the user or the data seems

to be a satisfactory solution to the problems of almost-degeneracy

encountered before. Together with the extrapolation of iterations

by leaps, it permits a fast and stable iterative estimation of the

many parameters involved in simultaneous multiple regression. The

results remain somewhat sensitive, however, to different prior spec-

ifications. Research on prior elicitation now going on in both

Pittsburgh and Iowa City, may assist future users on this point.

The revised program and model are now ready for application,

but the authors cannot resist the temptation to mention a few poss-

ible improvements.

Prior knowledge on means. The assumptions of uniform distri-

butions for the parameters Bf common to all groups and for the means

Y of parameters different per group could be relaxed to allow

the use of prior information.
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Angles for slopes. Normal distributions for slopes are not a

very realistic model unless the coefficient of variation is small.

Slopes for the groups that are normally distributed with e.g. a

mean of 3 and a standard deviation of .2 are acceptable, but not

slopes with a mean of 3 and a standard deviation of 2: the slope

change from 1 to 3 is certainly more drastic than from 3 to 5, and

even more when we compare a change from -1 to 3 to a change from 3

to 7. Neither uniform priors for mean slopes nor a prior for the

variance of a slope independent of the mean seem to reflect our

belief about slopes. Parameterization in terms of angles rather than

.slopes does away with most of these problems and will be examined in

future research. It is not a serious drawback that it leads to non-

conjugate distributions. As Bayesian modal estimates thus far have

typically shown small standard deviations, the practical impact of

using angles for slopes will not be dramatic.

LS estimates in restricted model. The model II estimates are

obtained by subtracting sampling variance from the "observed variance"

of the LS estimates. Once some'of them are negative and the corre-

sponding parameters are fixed, one could recalculate LS estimates

under that restriction: common values for some parameters, free

values for the others. Such a set of restricted LS estimates are

useful for two purposes: they would be a better set. of initial

estimates for the iteration, and the model II variance estimate for

the still free parameters among them is a better value for the prior
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variance, because the restriction of some parameters certainly affects

the mean, the raw variance, and the sampling error of the others.
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Appendix A

The data deck for the FORTWAN program BR consists of the following

cards:

1. Identification Card (1OA8)

Col. 1-80 Identification for data

2. Parameter Card (314, E8.2, F5.0, 812, 4F5.1)

H and NV must be read in, other parameters get default values

if blank

col. name format

1-4 M I 4 number of groups(< 25)

5-8 NV 1 4 number of predictors (< 4)

9-12 NC I 4 maximum number of cycles (default - 30

is used when 0; numbers exceeding 100 are

replaced by 100)

13-19 TAUMIN E 8.2 if prior variance, or calculated variance

beyond cycle 2, is less than TAUMIN, a common

value across groups is used. Default - 10-6

is used if number read is less than 10-

20-25 PHIMIN F 5.0 minimum for residual variance (default

10 if number read is less than 10- )

not used in this version.

26-27 INIST I 2 0* - LS initial values

1* - pooled initial values

2* - model 11 initial values

3 - read initial values, mat ideal point

* not yet available
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col. name format

4 = read initial values, a at scaling point

5 = read initial values, a at origin.

28-29 IWR 1 2 0* = no details on iteration

1 = details are printed

30-31 INTAU 1 2 0* = model II prior variances

1 - read prior variances

32-33 IPUN I 2 0 - no punched output

1 - modal estimates are punched

(8X, 6E 12.6)

34-35 NDH I 2 Iteration stops when log posterior density

constant in NDH leading digits (default- 5).

36-37 NDB I 2 No leaps are taken for a mean constant

in NDB leading digits (default - 4).

38-39 NCI I 2 Number of cycles preceding first leap

(default - 5, but 4 is used if number

read < 4).

40-41 NCF I 2 Number of cycles between leaps (default

- 4,.is used if number read < 4).

42-46 SCI F 5.1 Leap - SCH* last difference if difference

has just changed sign or old difference

almost 0 (default = 20.0).

47-51 DOV F 5.1 Leap - DCN* last difference if this difference

is not substantially closer to 0 than previous

difference (default a 20.0);

*Not yet available.
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col. name format

52-56 VGT F 5.1 Not used in this version.

57-61 PNU F 5.1 I)grce of freedom for prior variances

(default - 1 is used when number read is

-7less than 107).

3. Prior Variance Estimates Card (6E12.6)

Col. 1-12 T 0 =variance estimate for intercept (ideal scaling)

13-24 T1 =variance estimate for coefficient of first predictor

... (similarly for other predictors)

The remaining cards are read from a local file "DATA", not from

INPUT, as they will remain the same for various analyses of the same dataset.

4. Predictor Card (4A8)

Col. 1-8 Name of 1st predictor

9-16 Name of 2nd predictor

5. Scaling*Card for Original Scaling (5F8.0)

Points

Col. 1-8 Value to which criterion has been scaled

9-16 Value to which predictor 1 has been scaled

17-24 " " " 2 " "
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6. Scaling Card for Ideal Points (5E13.6)

Col. 1-13 Value to which criterion has been scaled

14-26 Ideal scaling point for predictor 1

27-39 " " " 2

7. Format Card for SCP Matrix (A8)

The cross products must be read in floating point form.

8. SCP Matrix Cards

For each group, there must be an upper triangular cross-product

matrix punched according to the format specified by card 6. The

cross-product matrices have the following form for the case of

two predictors:

Row 1 n i rx ilJ x xi2j EYIJ
Row 2 Ei2

R EX Xiljxi 2 j E2XiljYij

Row 3 EX2
RO 1Tx2j Ex 12jylj

Row 4 EY2J

These cross products are scaled to the values given by card 5.

9. Initial Values Cards (6E12.6)

For each group there must be a set of initial values, either

produced by BPREP or obtained separately. For the ith group,

we have
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Col. 1-12 initial value for 01

13-24 initial value for 0 11

initial value for 0 (must appear as

the last entry on each card).

As mentioned in the text, one possible source of the information

required in items 3 (Prior Variance Estimates), 6 (Ideal Scaling

Points), and 9 (Initial Values), is the FORTRAN program BPREP.

The information required to run that program is given by Jones

and Novick (1972, p. 24).

The program BR makes use of the IMSL library routine LEQT IF

for linear equations. This routine, or a similar one, should thus

be available during execution, as should be the local file "DATA"

containing items 4 through 9 listed above.



t 42
44

Appendix B

Description of the local file "DATB" on which the program writes

results important to the user:

There are at least three blocks of information. Each block consists

of at least one title line, followed by m lines of numbers. These

are group number, intercept at zero, intercept at pooled mean, and

slopes for each of the predictors. The FORTRAN format for each of

these lines is (13, 3X, K (FlO.4)), where K is the number of predictors

plus two. Blocks are separated by a blank line.

The titles for the blocks are

1. PER GROUP LEAST SQUARES REGRESSION WEIGHTS

GROUP INT(O) INT(PM) (predictor names).,

2. POOLED LEAST SQUARES REGRESSION WEIGHTS.

3. BAYESIAN MODAL REGRESSION WEIGHTS

PRIOR PRIOR SD

Df INT(PM) (predictor names)

(value of v') (values of T )

4. Same as 3, for each additional Bayesian analysis after the first.
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